

Tetrahedron 62 (2006) 4317-4322

Tetrahedron

Lonijaposides, novel cerebrosides from Lonicera japonica[☆]

Neeraj Kumar, Bikram Singh,* Ajai P. Gupta and Vijay K. Kaul

Institute of Himalayan Bioresource Technology, Palampur, HP 176 061, India

Received 17 December 2005; revised 9 February 2006; accepted 23 February 2006

Abstract—Six novel cerebrosides, lonijaposides A_1 – A_4 , B_1 and B_2 (1–6) have been isolated from the flowers of *Lonicera japonica*. Their structures were established on the basis of 1D, 2D (DEPT, HMQC, HMBC and COSY) NMR, ESI-QTOF-MS/MS and chemical evidence. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The flowers and buds of Lonicera japonica Thunb., are used in Chinese herbal medicine for latent-heat-clearing, antipyretic, detoxicant and anti-inflammatory ailments. This plant is known for its properties as an anti-inflammatory agent in Korea since ancient times and is widely used for respiratory infections, diabetes mellitus and rheumatoid arthritis.² Iridoid glucosides,^{3–5} flavonoids^{6–8} and saponins^{9,10} have previously been reported from the plant. Cerebrosides are a unique class of secondary metabolites, some of which are reported to have anti-tumour, anti-HIV-1, neuritogenic, hepatoprotective, immunosuppressive, immunostimulatory, anti-ulcerogenic, anti-fungal and antimicrobial activities. 11 It has been proved that the polarity of the cerebrosides is associated with the presence of extra hydroxyls in the sphingoid base and plays a key role in the neuritogenic activities. 12 Moreover, cerebrosides have been observed to be correlated to the tolerance of some plants to chilling stresses. 11 In continuation of our work for a search of novel molecules from the plant bioresource of the western Himalayas, $^{8,13-15}$ we now report the isolation and structural elucidation of six new cerebrosides, designated as lonijaposides A_1 - A_4 , B_1 and B_2 , from the flowers of L. japonica. To the best of our knowledge this is the first report of novel cerebrosides from the genus *Lonicera* (Fig. 1).

2. Results and discussion

Column chromatography of methanol extract of fresh flowers over silica gel afforded a molecular species LJC-1

Figure 1. Structures of lonijaposide A_1 (1), A_2 (2) and A_3 (3).

as amorphous white solid. The IR spectrum of LJC-1 showed absorption bands at 3350 and 3220, 1620 and 1540, and 1665 cm⁻¹ indicated the presence of hydroxyl, amide and olefinic functions, respectively. The ¹H NMR spectrum of LJC-1 (Table 1) showed the presence of two terminal methyls at δ 0.73 (6H, t, J=7.2 Hz), methylenes at δ 1.18 (br s), an amide proton signal at δ 8.46 (1H, d, J=8.7 Hz), signals of a trans-olefinic bond at δ 5.38 (1H, br dt, J= 16.5, 6.5 Hz) and δ 5.40 (1H, br dt, J = 16.5, 6.5 Hz) and six characteristic signals of geminal protons to hydroxyl groups were also observed at δ 4.50 (1H, m), 4.40 (1H, dd, J = 10.5, 4.5 Hz), 4.33 (1H, dd, J = 10.5, 4.7 Hz), 4.23 (1H, m), 4.10 Hz(2H, m). Another signal at low field was observed at δ 5.01 (1H, m) for a methine proton vicinal to the nitrogen atom of the amide group. The data indicated a phytosphingolipid structure. ^{16,17} To further confirm, ¹³C NMR spectra of LJC-1 (Table 1) showed one quaternary carbon at δ 176.5 (CONH), two olefinic methine carbons at δ 132.1 and 131.9 (C=C), five methines at δ 54.5 (CHNH), 78.1 (CHOH), 74.2 (CHOH), 74.1 (CHOH), 73.7 (CHOH) and one methylene at δ 63.2 (CH₂OH). The geometry (E) of the double bond in the unsaturated long chain base portion was determined on the basis of the ¹³C NMR chemical shift

[★] IHBT communication no. 0580.

Keywords: Lonicera japonica; Cerebrosides; Lonijaposides A_1 – A_4 , B_1 , B_2 . * Corresponding author. Tel.: +91 1894 230426; fax: +91 1894 230433; e-mail: bikram_npp@rediffmail.com

Table 1. ¹H and ¹³C NMR (300 and 75.6 MHz) of LJC-1, **1** and **4**

	Compounds								
-		LJC-1		1		4			
No.	$\delta_{ m C}$	$\delta_{\rm H}$ m (J Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ m (J Hz)	$\delta_{ m C}$	δ_{H} m (J Hz)			
1	63.2	4.33dd (10.5, 4.7) 4.40dd (10.5, 4.5)	63.2	4.33dd (10.5, 4.7) 4.41dd (10.5, 4.5)	70.9	4.40dd (10.3, 3.5) 4.71dd (10.3, 6.1)			
2	54.2	5.01m	54.2	5.01m	54.9	5.00m			
3	78.1	4.23m	78.2	4.23m	78.0	4.21m			
4	35.3	2.30m	35.4	2.30m	35.4	2.30m			
5	74.1	4.10m	74.1	4.10m	74.3	4.00m			
6	74.2	4.10m	74.2	4.10m	74.3	4.10m			
7	33.3	2.05	33.4	2.05	33.3	2.01			
8	34.5	1.88-2.05m	34.4	1.88-2.05m	34.7	1.89-2.03m			
9	131.9	5.38 br dt (16.5, 6.5)	131.9	5.38 br dt (16.5, 6.5)	131.9	5.33 br dt (16.5, 6.5)			
10	132.1	5.40 br dt (16.5, 6.5)	132.1	5.40 br dt (16.5, 6.5)	132.2	5.46 br dt (16.5, 6.5)			
11	34.2	1.88-2.05m	34.4	1.88-2.05m	34.7	1.89-2.03m			
12	33.3	2.05m	33.4	2.05m	33.3	2.05m			
$(CH_2)_n$	30.7-31.5	1.18 br s	30.7-31.5	1.18 br s	30.6-31.2	1.23 br s			
24	30.8	1.18m	30.8	1.18m	30.6	1.23m			
25	24.1	1.18m	24.0	1.18m	24.1	1.23m			
26	15.5	0.73t (7.2)	15.5	0.73t (7.2)	15.5	0.67t (7.0)			
NH		8.46d (8.7)		8.46d (8.7)		8.60d (8.7)			
1'	176.5		176.4		175.4				
2'	73.7	4.50m	73.6	4.50m	73.6	4.62m			
3'	36.9	1.88m	36.8	1.88m	37.0	1.90m			
4'	27.0	1.64m	27.0	1.64m	27.3	1.66m			
$(CH_2)_m$	30.7-31.5	1.18 br s	30.7-31.5	1.18 br s	30.6-31.2	1.23 br s			
13'	30.8	1.18	30.8	1.18	30.6	1.23			
14'	24.1	1.18m	24.0	1.18m	24.1	1.23m			
15'	15.5	0.73t (7.2)	15.5	0.73t (7.2)	15.5	0.67t (7.0)			
1'				···-/	106.0	4.97d (7.8)			
2'					75.9 ←				
3'					78.8				
4'					72.0	3.67-4.50			
5'					79.7	3.07-4.30			
6'					65.4				
U					03.4				

value (34.2, 34.5) of the methylene carbon adjacent to the olefinic carbon, which must be observed at $\delta \approx 27$ in (Z) isomers and at $\delta \approx 32$ in (E) isomers. All these spectral data revealed that the compound LJC-1 possessed two aliphatic chains containing one double bond and five hydroxyl groups and suggesting it to be a phytosphingosine type sphingolipid. The positive and negative charged HRESI-QTOF-MS of LJC-1 gave three protonated $[M+H]^+$ and three deprotonated $[M-H]^-$ molecular ion peaks at m/z 684.6121, 656.5798, 698.6278 and 682.5965, 654.5655, 696.6133, respectively. This led to the conclusion that LJC-1 is a mixture of three cerebrosides (1–3), which was further confirmed by methanolysis of LJC-1.

Methanolysis of LJC-1 yielded a mixture of two fatty acid methyl esters (FAM) and two long chain bases (LCB). The fatty acid methyl esters (FAM) were identified by GC–MS as methyl 2-hydroxypentadecanoate and methyl 2-hydroxyhexadecanoate. The positive and negative mode HRESI-QTOF-MS of mixture of long chain bases gave sodiated $[M+Na]^+$ and deprotonated $[M-H]^-$ molecular ion peaks at $\emph{m/z}$ 466.3870 (calcd 466.3872), 438.3556 (calcd 438.3559) and 442.3889 (calcd 442.3897), 414.3579 (calcd 414.3584) corresponding to the molecular formulae $C_{26}H_{53}NO_4$ and $C_{24}H_{49}NO_4$, respectively. The above data suggested that LJC-1 comprised of three cerebroside (1–3) and among the three, two cerebrosides (1 and 2) had identical fatty acids with long chain bases of varying chain lengths (C_{26} and C_{24} , respectively). The third cerebroside

(3) contained long chain base identical to that of 1 but with a different fatty acid (2-hydroxy hexadecanoic acid). LJC-1 showed a single spot on normal phase TLC, but different retention times in reversed phase HPLC, thus revealing difference in their carbon chains. HPLC of LJC-1 showed the presence of 1 as a major constituent whereas other constituents (2 and 3) were in lesser amounts. Therefore, compound 1 was separated by reversed phase prep-HPLC for detailed analysis.

 1 H and 13 C NMR spectra of **1** (Table 1) were identical to those of LJC-1. The molecular formula of **1** was established as $C_{41}H_{81}NO_{6}$ by positively and negatively charged HRESI-QTOF-MS, which gave protonated $[M+H]^{+}$ and deprotonated $[M-H]^{-}$ molecular ion peaks at m/z 684.6121 (calcd 684.6142) and 682.5965 (calcd 682.5986).

Methanolysis of **1** yielded methyl 2-hydroxypentadecanoate identified by GC–MS. The existence of the 2-hydroxylpentadecanoyl moiety was also confirmed by the presence of EI-MS at m/z 286 [M]⁺ and 256 [M–15]⁺ as well as by the release of characteristic fragment ions at m/z 227 [M–59]⁺ and 90 [CH₂OHCOOCH₃]⁺. Therefore, the long chain base (LCB) was characterized as C₂₆-phytosphingosine having four hydroxyls, one double bond and an amino group.

The positively charged ESI-QTOF-MS/MS of **1** showed fragment ions at m/z 428 [M-CH₃(CH₂)₁₂CHOHCONH]⁺,

Figure 2. EI mass fragmentation pattern and important HMBC correlations of compound 1.

257 [M-LCB]⁺, 383 [428-CH₂CH₂OH]⁺, 300 [257+ $CH_2CH_2OH_1^+$, 282 $[300-H_2O]^+$ and 264 $[300-2\times$ H₂O]⁺. This further confirmed for 2-hydroxypentadecanoyl and C₂₆-long chain base in 1. The fragmentation pattern of compound 1 in EI mode was consistent with the pattern obtained in ESI mode (Fig. 2). The presence of 2-amino and 1, 2', 3, 5, 6 pentahydroxyl groups as well as 9, 10 double bond in the main chain was established by the analysis of ¹H and ¹³C NMR spectroscopic data of **1**, which was unambiguously assigned by extensive 2D NMR (¹H–¹H COSY, HMQC and HMBC) techniques. The ¹H–¹H COSY spectrum of 1 showed a pair of double doublets of oxygenated methylenes at δ 4.41 (1H, dd, J = 10.5, 4.5 Hz) and 4.33 (1H, dd, J=10.5, 4.7 Hz) coupled to the nitrogen bearing methine signal at δ 5.01 (1H, m), which coupled further to the signal at δ 4.23 (1H, m). Olefinic protons at δ 5.38 (1H, br dt, J=16.5, 6.5 Hz) and δ 5.40 (1H, br dt, J = 16.5, 6.5 Hz) showed coupling with methylene protons resonated at δ 1.88 (1H, m) and 2.05 (1H, m). In the HMBC spectrum of 1, the signal at δ 4.50 correlated to the quaternary carbon and methylene carbon resonated at δ 176.5 and 36.9, respectively. The proton at δ 5.01 showed correlation with oxygenated methylene (δ 63.2) and oxygenated methines (δ 78.1). Thus, on the basis of the above evidence, compounds 1, 2 and 3 were assigned structures as 1,3,5,6-tetrahydroxy-2-(2'-hydroxypentadecanoyl amino)-9-(E)-hexacosene named as lonijaposide A_1 , 1,3,5,6-tetrahydroxy-2-(2'-hydroxypentadecanoyl amino)-9-(E)-tetracosene named as lonijaposide A2 and 1,3,5,6tetrahydroxy-2-(2'-hydroxyhexadecanoyl amino)-9-(E)hexacosene named as lonijaposide A₃, respectively. The configuration at the chiral centers could not be established due to paucity of the compounds.

Compound **4** was obtained as a white solid showing [M+Na]⁺ and [M-H]⁻ peaks in positive and negative mode HRESI-QTOF-MS at m/z 882.6621 (calcd 882.6646) and 858.6668 (calcd 858.6671), respectively, corresponding to the molecular formula $C_{48}H_{93}NO_{11}$. The IR spectrum was similar to LJC-1 but in the ¹H NMR spectrum (Table 1) additional peaks due to the glucose moiety were observed. The anomeric proton showed a signal at δ 4.97 (d, J= 7.8 Hz) and J value suggested a β -configuration of the glucose unit. Other protons of glucose, geminal to hydroxyl groups resonated at δ 3.67–4.65. The ¹³C NMR spectrum (Table 1) also revealed the presence of the sugar moiety, which showed an anomeric carbon at δ 106.0 and hydroxyl containing methine carbons at δ 75.9, 78.8, 72.0 and 79.7

and a signal at δ 65.4 (CH₂OH). The above observations suggested that **4** is a glycoside of **3**. It was also confirmed by ESI-QTOF-MS/MS of m/z 882, which showed prominent peak at m/z 720 due to the elimination of glucosyl moiety. The further fragmentation pattern observed was similar to compound **3**. The position of the glucose moiety at C-1 was evident by the downfield chemical shift of hydroxymethylene carbon at δ 70.9 in ¹³C NMR spectrum by 7.8 ppm and further confirmed by HMBC spectrum in which the correlation was observed between the anomeric proton (δ 4.97) with the hydroxymethylene carbon (δ 70.9). In conclusion, glycoside **4** was assigned as 1-*O*- β -D-glucopyranosyl-3,5,6-trihydroxy-2-(2'-hydroxyhexadecanoyl amino)-9-(*E*)-hexacosene designated as lonijaposide B₁ (Fig. 3).

Compound 5 was also obtained as a white powder. The ¹H and ¹³C NMR of 5 (Table 2) was found to be quite similar to LJC-1. However, its positive and negative HRESI-QTOF-MS gave sodiated $[M+Na]^+$ and deprotonated $[M-H]^$ molecular ion peaks at m/z 776.6721 (calcd 776.6744) and 752.6759 (calcd 752.6768) corresponding to the molecular formula C₄₆H₉₁NO₆. The ¹H NMR spectrum of **5** showed the presence of two terminal methyls at δ 0.85 (6H, t, J= 7.1 Hz), methylenes at δ 1.23 (56H, br s), an amide proton signal at δ 8.60 (1H, d, J=8.7 Hz), signals of trans-olefinic bond at δ 5.33 (1H, br dt, J= 16.5, 6.5 Hz) and δ 5.46 (1H, br dt, J=16.5, 6.5 Hz) and six characteristic signals of geminal protons to hydroxyl groups were also observed at δ 4.62 (1H, m), 4.50 (1H, dd, J=10.5, 4.7 Hz), 4.35 (1H, dd,J = 10.5, 4.5 Hz), 4.21 (1H, m), 4.10 (2H, m). A seventh signal at low field was observed at δ 5.03 (1H, m) identified for a methine proton vicinal to the nitrogen atom of the amide groups. The ¹³C NMR spectra of 5 showed one quaternary carbon at δ 176.9 (CONH), two olefinic methine carbons at δ 132.1 and 132.3 (C=C), five methines at δ 54.9 (CHNH), δ 78.2 (CHOH), δ 74.1 (CHOH), δ 74.2 (CHOH), δ 73.6 (CHOH) and one methylene at δ 63.8 (CH₂OH). Methanolysis of 5 yielded methyl 2-hydroxyoctadecanoate and one long chain base. The positive HRESI-MS of LCB gave a sodiated $[M+Na]^+$ molecular ion peak at m/z494.4166 (calcd 494.4185) corresponding to the molecular formula C₂₈H₅₇NO₄Na. Thus, the molecular mass of LCB together with ¹H and ¹³C NMR spectroscopic data suggested C₂₈-phytosphingosine-type long chain base containing four hydroxyls, one double bond and an amino group. Therefore, the structure of 5 was assigned to be

Figure 3. Structures and selected HMBC (H \rightarrow C) of lonijaposide B₁ (4), A₄ (5) and B₂ (6).

Table 2. ^{1}H and ^{13}C NMR (300 and 75.6 MHz) of **5** and **6**

Compounds								
		5	6					
Position	$\delta_{ m C}$	$\delta_{ m H}$ m (J Hz)	$\delta_{ m C}$	$\delta_{ m H}$ m (J Hz)				
1	63.8	4.35dd (10.5, 4.5), 4.50dd (10.5, 4.7)	70.5	4.30dd (10.5, 4.7), 4.52dd (10.5, 4.5)				
2	54.9	5.03m	54.3	5.01m				
3	78.2	4.21m	78.2	4.23m				
4	35.4	2.30m	35.4	2.28m				
5	74.1	4.00m	74.1	4.11m				
6	74.2	4.10m	74.2	4.10m				
7	33.3	2.01	33.4	2.05				
8	34.7	1.89-2.03m	34.4	1.90-2.05m				
9	132.1	5.33 br dt (16.5, 6.5)	131.9	5.37 br dt (16.5, 6.5)				
10	132.3	5.46 br dt (16.5, 6.5)	132.1	5.40 br dt (16.5, 6.5)				
11	34.7	1.89-2.03m	34.4	1.90-2.05m				
12	33.3	2.01m	33.4	2.05m				
13-23	30.5-31.2	1.23 br s	30.7-31.5	1.21 br s				
24	30.6	1.23m	30.8	1.21m				
25	24.2	1.23m	24.0	1.21m				
26	15.5	0.85t (7.1)	15.5	0.75t (7.2)				
NH		8.60d (8.7)		8.46d (8.7)				
1'	176.3	, ,	176.4					
2'	73.6	4.62m	73.6	4.50m				
3'	36.5	1.90m	36.8	1.88m				
4'	27.3	1.66m	27.0	1.64m				
5'-13'	30.6–31.2	1.23 br s	30.7–31.5	1.18 br s				
14'	30.6	1.23	30.8	1.21				
15'	24.1	1.23m	24.0	1.21m				
16'	15.5	0.85t (7.1)	15.5	0.75t (7.2)				
1"	13.3	0.03t (7.1)	105.9	4.97d (7.9)				
2"			75.2 ◄ ₁	4.574 (7.5)				
3"			76.4					
3 4"			79.8	2.00. 4.52				
5"				3.90–4.52				
			78.4					
6"			63.8 ◄ ^J					
1‴			105.0	4.68d (7.6)				
2'''			75.2					
3′′′			78.0					
4‴			72.0	3.90-4.52				
5‴			79.3					
6′′′			65.4 ◆ ^J					

1,3,5,6-tetrahydroxy-2-(2'-hydroxyoctadecanoyl amino)-9-(*E*)-octacosene named as lonijaposide A₄ (Fig. 3).

Compound 6 was also obtained as a white solid. The HRESI-QTOF-MS in positive and negative mode gave sodiated $[M+Na]^+$ and deprotonated $[M-H]^-$ molecular ion peak at m/z 1100.7798 (calcd 1100.7801) and 1076.7810 (calcd 1076.7825), respectively. On the basis of molecular mass and ¹H and ¹³C NMR spectral data (Table 2) the molecular formula of 6 was established as C₅₈H₁₁₁NO₁₆. The ¹H and ¹³C NMR spectra were found to be identical with compound 5 except the presence of additional peaks of two sugar moieties. In ¹H NMR spectrum anomeric peaks of two glucose units were observed at δ 4.97 (1H, d, 7.9) and δ 4.68 (1H, d, 7.6) together with overlapping peaks of other carbons at δ 3.90–4.52. ¹³C NMR spectrum also revealed the presence of two glucose moieties linked together in C1"'-C4" pattern. C1"'-C4" linkage in sugars was evidenced by downfield shift of C4" carbons by 8 ppm and upfield shift of C3" and C5" carbons by 1–1.5 ppm. This linkage was further confirmed by HMBC correlation, which showed the correlation between anomeric proton (δ 4.68) of second glucose with C4" carbon of first glucose. Thus, the above observations suggested that compound 6 was a diglycoside of 5. The presence of two glucose units was further confirmed by ESI-QTOF-MS/MS of m/z 1100, which showed prominent peaks at m/z 938 and 776 due to the sequential elimination of two glucosyl moieties. This is the first report of presence of any diglycoside cerebroside in nature. 11 In conclusion, diglycoside 6 was assigned the structure as 1-O- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl-3,5,6-trihydroxy-2-(2'-hydroxyoctadecanoyl amino)-9-(E)-octacosene designated as lonijaposide B_2 (Fig. 3).

3. Experimental

3.1. General experimental procedure

Melting points were recoded on Barnstead Electrothermal melting point apparatus and are uncorrected. Optical rotations were determined on Horiba SEPA-300 polarimeter. IR spectra were recorded on a Perkin-Elmer 1760 FT-IR spectrometer with KBr disc. NMR spectra were recorded on a Bruker Avance-300 spectrometer. ESI-QTOF-MS was performed on QTOF-Micro, Waters Micromass and GC-MS was done on Shimadzu QP-2010 operating on EI mode at 70 eV with an ion source temperature of 200 °C; capillary column, BP20 (30 m× 0.25 mm, 0.25 µm film thickness); carrier gas, He. HPLC was carried out on Waters prep LC 4000 system. Silica gel (60-120 mesh, Merck) was used for column chromatography. Pre-coated silica gel 60 F₂₅₄ (Merck) plates were used for TLC. All other chemicals used were produced by Merck India Ltd.

3.2. Plant material

The fresh flowers of *L. japonica* were collected from IHBT, Palampur, India during May 2004. A voucher specimen (No. 5909) has been deposited in the Herbarium of IHBT, Palampur, India.

3.3. Extraction and isolation

The fresh flowers (400 g) of L. japonica were extracted successively, with *n*-hexane $(3 \times 1500 \text{ mL})$ and EtOAc (3×1000 mL) and remaining material was air dried and powdered. The powdered flower material was extracted at room temperature with MeOH (3×800 mL). Evaporation of each solvent in vacuo, yielded n-hexane extract (1.36 g), EtOAc (5.00 g) and MeOH extract (33.00 g). The MeOH extract (33.00 g) was subjected to column chromatography over silica gel (60-120 mesh) and eluted with CHCl₃, CHCl₃-MeOH (95/5), (90/10), (85/15), (80/20), (70/30), (50/50), (30/70), (10/90) and MeOH to give a total of 150 fractions (100 mL each). Fractions 42-45, eluted with CHCl₃-MeOH (85/15) were evaporated and the resulting residue (95 mg) was crystallized in MeOH to give white solid LJC-1 (55 mg), which showed a single spot on TLC (CHCl₃/MeOH, 90:10). HPLC of LJC-1 (solvent MeOH/H₂O; 40:60; flow rate 7.0 mL/min; column: LichroCART 250×10 mm, Lichrosphere 100 RP18, particle size 10 µm) showed 3 peaks. Using these conditions, 40 mg of LJC-1 was separated by HPLC to give compound 1 (19.3 mg). Fractions 50–53, eluted with CHCl₃-MeOH (85/15) were evaporated and the white residue on crystallization in MeOH yielded compound 5 (22.4 mg). Fractions 56-68 eluted with CHCl₃-MeOH (80/20 and 70/30), were mixed and evaporated, and the resultant white residue (92 mg) was rechromatographed over silica gel (60-120 mesh), which on elution with CHCl₃-MeOH (85/15), (80/20) and (70/30) provided compound 4 (20 mg) in CHCl₃-MeOH (80/20) and compound 6 (23 mg) in CHCl₃-MeOH (70/30).

3.3.1. LJC-1. Amorphous powder; IR (KBr) $\nu_{\rm max}$ 3350, 3220, 1665, 1620, 1540 cm⁻¹; 1 H and 13 C NMR see Table 1; positive-ion HRESI-QTOF-MS m/z: 684.6121 [M+H]⁺, 656.5798 [M+H]⁺, 698.6278 [M+H]⁺ and negative-ion HRESI-QTOF-MS m/z: 682.5965 [M-H]⁻, 654.5655 [M-H]⁻, 696.6133 [M-H]⁻.

3.3.2. Methanolysis of LJC-1. LJC-1 (10 mg) was refluxed with 1.5 mL of 1 M HCl in 82% aqueous MeOH for 12 h. The reaction mixture was cooled and extracted with *n*-hexane. Hexane layer was concentrated to give a mixture of two fatty acid methyl esters, which could be identified as methyl 2-hydroxypentadecanoate and methyl 2-hydroxyhexadecanoate by GC-MS showing molecular ion peaks at m/z 272 and 286, respectively, and characteristic fragments at m/z 213 $[M-59]^+$, 90 $[CH_2OHCOOCH_3]^+$ and 227 $[M-59]^+$, 90 $[CH_2OHCOOCH_3]^+$, respectively. The MeOH-H₂O phase was neutralized with Ag₂CO₃, filtrated, and the filtrate was concentrated in vacuo to give a mixture of two long chain bases, which on ESI-QTOF-MS generated molecular ion peaks at m/z 466.3870 [M+Na]⁺, 438.3556 $[M+Na]^+$ and 442.3889 $[M-H]^-$, 414.3579 $[M-H]^-$, respectively.

3.3.3. Lonijaposide A_1 (1). Amorphous powder; mp 136–138 °C; $[\alpha]_D^{24} + 13.3$ (c 0.0011, pyridine); ¹H and ¹³C NMR see Table 1; positive and negative-ion HRESI-QTOF-MS m/z: 684.6121 $[M+H]^+$ (calcd 684.6142) and 682.5965 $[M-H]^-$ (calcd 682.5986), respectively; positive-ion ESI-MS/MS m/z (%): 666 $[M-H_2O]^+$ (100), 648

3.3.4. Lonijaposide A₄ (5). Amorphous powder; 128–130 °C; $[\alpha]$ +14.5 (c 0.0011, pyridine); 1 H and 13 C NMR see Table 1; positive and negative-ion HRESI-QTOF-MS m/z: 776.6721 $[M+Na]^+$ (calcd 776.6744) and 752.6759 $[M-H]^-$ (calcd 752.6768), respectively; positive-ion ESI-MS/MS m/z (%): 758 $[M+Na-H_2O]^+$ (100), 740 $[M+Na-2\times H_2O]^+$ (40), 722 $[M+Na-3\times H_2O]^+$ (15), 478 $[M+Na-CH_3(CH_2)_{15}CHOHCONH]^+$ (12), 433 $[478-CH_2CH_2OH]^+$ (15), 321 $[CH_3(CH_2)_{15}CHOHCONH+Na]^+$ (6), 366 $[321+CH_2CH_2OH]^+$ (9), 348 $[366-H_2O]^+$ (25). Lonijaposide A₄ (**5**) was methanolyzed as per the method described for LJC-1 to yield methyl 2-hydroxy-octadecanoate as fatty acid methyl ester.

3.3.5. Lonijaposide B_1 (4). Amorphous powder; mp 120–121 °C; $[\alpha] + 8.9$ (c 0.0011, pyridine) ¹H and ¹³C NMR see Table 1; positive and negative-ion HRESI-QTOF-MS m/z: 882.6621 $[M+Na]^+$ (calcd 882.6646) and 858.6668 $[M-H]^-$ (calcd 858.6671), respectively; positive-ion ESI-MS/ MS m/z (%): 720 $[M+Na-glu]^+$ (20); 702 $[M+Na-glu-H_2O]^+$ (18), 684 $[M+Na-glu-2\times H_2O]^+$ (32), 666 $[M+Na-glu-3\times H_2O]^+$ (10), 450 $[M+Na-glu-CH_3(CH_2)_{13}$ -CHOHCONH] $[M+Na-glu-CH_2OH]^+$ (17), 315 $[CH_3(CH_2)_{13}CHOHCONHCH_2CH_2OH]^+$ (28), 297 $[315-H_2O]^+$ (57), 279 $[315-2\times H_2O]^+$ (48). Lonijaposide $[M+Na-glu-CH_2OH]^+$ (28), 297 $[M+Na-glu-CH_2OH]^+$ (38), 297 $[M+Na-glu-CH_2OH]^+$ (39), 297 $[M+Na-glu-CH_2OH]^+$ (31), 315 $[M+Na-glu-CH_2OH]^+$ (32), 315 $[M+Na-glu-CH_2OH]^+$ (31), 315 $[M+Na-glu-CH_2OH]^+$ (31), 315 $[M+Na-glu-CH_2OH]^+$ (32), 315 [M+Na-glu-CH

3.3.6. Lonijaposide B_2 (6). Amorphous powder; mp 114–115 °C; $[\alpha]_D^{24} + 9.3$ (c 0.0011, pyridine) H and H and H and Ree Table 1; positive and negative-ion HRESI-QTOF-MS m/z: 1100.7798 $[M+Na]^+$ (calcd 1100.7801) and 1076.7810 $[M-H]^-$ (calcd 1076.7825), respectively; positive-ion ESI-MS/MS m/z (%): 938 $[M+Na-glu]^+$ (9), 776 $[M+Na-2\times glu]^+$ (20), 758 $[M+Na-2\times glu-H_2O]^+$ (6), 722 $[M+Na-2\times glu-3\times H_2O]^+$ (4), 478 $[M+Na-2\times glu-CH_3(CH_2)_{15}CHOHCONH]^+$ (10), 306 $[CH_3(CH_2)_{15}CHOHCO+Na]^+$ (9), 433 $[478-CH_2CH_2-OH]^+$ (17), 366 $[CH_3(CH_2)_{15}CHOHCONHCH_2CH_2OH+Na]^+$ (28), 348 $[366-H_2O]^+$ (27), 330 $[366-2\times H_2O]^+$ (48), 347 $[2\times glu+Na]$ (100). Lonijaposide B_2 (6)

was methanolyzed as per the method described for LJC-1 to yield methyl 2-hydroxyoctadecanoate as fatty acid methyl ester.

Acknowledgements

We are grateful to Dr. P. S. Ahuja, Director, IHBT Palampur, for providing necessary facilities. Technical assistance from Mr. Dhruv Kumar and Mr. Ramesh Kumar are greatly acknowledged.

References and notes

- Chang, W. C.; Hsu, F. L. Prostaglandins Leukot. Essent. Fatty Acids 1992, 45, 307–312.
- Lee, S. J.; Son, K. H.; Chang, H. W.; Kang, S. S.; Kim, H. P. Phytother Res. 1998, 12, 445–447.
- Kawai, H.; Kuroyanagi, M.; Umehara, K.; Ueno, A.; Satake, M. Chem. Pharm. Bull. 1988, 36, 4769–4775.
- Mehrotra, R.; Singh, C.; Popli, S. P. J. Nat. Prod. 1988, 51, 319–321.
- Machida, K.; Sasaki, H.; Ijima, T.; Kikuchi, M. Chem. Pharm. Bull. 2002, 50, 1041–1044.
- Son, K. H.; Park, J. O.; Chung, K. C.; Chang, H. W.; Kim, H. P.; Kim, J. S.; Kang, S. S. Arch. Pharm. Res. 1992, 15, 365–370.
- Son, K. H.; Kim, J. S.; Kang, S. S.; Kim, H. P.; Chang, H. W. Kor. J. Pharmacogn. 1994, 25, 24–27.
- Kumar, N.; Singh, B.; Bhandari, P.; Gupta, A. P.; Uniyal,
 K.; Kaul, V. K. *Phytochemistry* 2005, 66, 2740–2744.
- Son, K. H.; Jung, K. Y.; Chang, H. W.; Kim, H. P.; Kang, S. S. Phytochemistry 1994, 35, 1005–1008.
- Kwak, W. J.; Han, C. K.; Chang, H. W.; Kim, H. P.; Kang, S. S.; Son, H. H. Chem. Pharm. Bull. 2003, 51, 333–335.
- 11. Tan, R. X.; Jen, J. H. Nat. Prod. Rep. 2003, 20, 509-534.
- 12. Koga, J.; Yamauchi, T.; Shimura, M.; Ogawa, N.; Oshima, K.; Umemura, K.; Kikuchi, M.; Ogasawara, N. *J. Biol. Chem.* **1998**, *273*, 31985.
- Mahmood, U.; Kaul, V. K.; Singh, B. Phytochemistry 2002, 61, 913–917.
- 14. Verma, V. H. K.; Mahmood, U.; Singh, B. *Nat. Prod. Lett.* **2002**, *16*, 255–259.
- Bhandari, P.; Kumar, N.; Singh, B.; Kaul, V. K. Chem. Pharm. Bull. 2006, 54, 240–241.
- Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y. *Tetrahedron* 1994, 50, 2771–2784.
- Gao, J. M.; Yang, X.; Wang, C. Y.; Liu, J. K. Fitoterapia 2001, 72, 858–864.